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Abstract
A finite two-dimensional oscillator is built as the direct product of two finite
one-dimensional oscillators, using the dynamical Lie algebra su(2)x ⊕ su(2)y .
The position space in this model is a square grid of points. While the ordinary
‘continuous’ two-dimensional quantum oscillator has a symmetry algebra u(2),
the symmetry algebra of the finite model is only u(1)x⊕u(1)y , because it lacks
rotations in the position (and momentum) plane. We show how to ‘import’ an
SO(2) group of rotations from the continuum model that transforms unitarily
the finite wavefunctions on the fixed square grid. We thus propose a finite
analogue for fractional U(2) Fourier transforms.

PACS numbers: 02.20.Qs, 02.30.Gp, 42.30.Kq, 42.30.Va

1. Introduction

A two-dimensional isotropic harmonic oscillator is characterized in the familiar context of
Hilbert spaces and Lie algebraic theory by the following postulates (cf [1]):

(1) There exist two (essentially self-adjoint) position operators, indicated by �Q def= (Qx,Qy),
whose spectrum is the set of position values of the system.

(2) There exists a (self-adjoint and compact) Hamiltonian operator H , which is the generator
of time evolution, satisfying the Newton–Lie or Hamilton–Lie equations

[H, [H, �Q]] = �Q⇐⇒
{

[H, �Q]
def= −i �P

[H, �P ] = i �Q.
(1)

The first Hamilton equation is purely geometrical: it only defines the momentum operators,
�P def= (Px, Py); the second Hamilton equation contains the oscillator dynamics. The

spectrum of �P is the set of momentum values of the system.
3 Permanent address: Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia.
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(3) Under commutator brackets, all operators close into a Lie algebra. (In [1], q-algebras
were also correspondingly postulated, and found.)

We emphasize that nothing is said in these postulates about the Lie brackets between
the components of position and momentum. If one proposes [Qα,Qβ] = 0 = [Pα, Pβ] and
[Qα, Pβ] = iδα,β 1̂, then the operators will close into the two-dimensional oscillator algebra of
six generators H6 = span{H,Qα, Pβ, 1̂}. In [1] we showed that postulate (3) permits a small
variety of Lie algebras (and q-algebras, with q in the postulate (3)), which apparently went
unrecognized in oscillator physics (see, however, [2]).

The one-dimensional finite oscillator model developed in [3–6] satisfies postulate (3)
with the dynamical Lie algebra su(2); in this model therefore, the eigenvalues of the position,
momentum and energy operators are discrete; the eigenvalue of a compactu(1) central operator
fixes the dimension of the su(2) representation. We review the one-dimensional finite oscillator
model in section 2 with u(2) for dynamical algebra; its wavefunctions, involving Kravchuk
polynomials, are well-known (discrete) functions of angular momentum theory. Finally, it is
shown that the contraction limit of the finite oscillator, when the number and density of points
grows, is the usual quantum harmonic oscillator model.

The two-dimensional finite oscillator is introduced in section 3 as a direct product of two
one-dimensional finite oscillators; its position space is a square grid of points along Cartesian
coordinates and its dynamical algebra is u(1) ⊕ su(2) ⊕ su(2). Yet, as we know from the
quantum oscillator, the passage from one to two dimensions entails new features, such as
the enlarging of the symmetry group from u(1) to a nontrivial symmetry u(2)—we use the
notation with a bar to stress that it is a symmetry algebra which is physically distinct from the
dynamical algebra u(2) of the one-dimensional finite oscillator. In the two-dimensional finite
oscillator, instead of u(2), the manifest symmetry within the construction is only u(1)⊗ u(1)
(in a semidirect product with dihedral reflections D4); this is called the domestic symmetry al-
gebra [7,8]; the corresponding group consists of fractional Fourier–Kravchuk finite transforms
along the two Cartesian axes.

A part of the symmetry transformation group of the 2D quantum oscillator (or geometric, or
wave, optical waveguide [9]), U(2), can nevertheless be imported onto the 2D finite Cartesian
oscillator system. In section 4, we adapt the concepts of domestic and imported algebras
from [7, 8] to define ‘angular momentum’ states in the finite oscillator. Thus we can import
the subgroup SO(2) of rotations by specifying the transformations undergone by those finite
angular momentum states. Strictly speaking, this is not a symmetry of the finite Cartesian grid
on a square; it is a group of unitary transformations of the wavefunctions on this grid, diagonal in
mode number (energy) and which, in the limit of large grid size and density, smoothly becomes
the rotation of the plane of positions (and of momenta) of the usual quantum oscillator. The
fractional Fourier–Kravchuk transformations along the two grid axes, and rotations, close into a
finite analogue of the 2D U(2) fractional Fourier transforms [9]. Finally, we offer a discussion
of the implications of this model for pixellated image analysis, amongst the conclusions in
section 5.

The following paper in this series will refer to a distinct model of the finite two-dimensional
oscillator, where position space consists of points on concentric, equally spaced circles. The
dynamical algebra, representation and number of points will be the same, but with a specific
correspondence between dynamical algebra generators and phase space observables.

2. Finite one-dimensional oscillator

In the one-dimensional finite oscillator model there is a single position operator Q, its
corresponding momentum P and the Hamiltonian H . The third postulate—that these three
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generators close into a Lie algebra—requires them to satisfy the Jacobi identity. Using (1),
this implies that

[H, [Q,P ]] = 0⇐⇒ [Q,P ] = iG(1̂, H,C) (2)

where G is a function of a unit (or generally central) operator 1̂, and/or the Hamiltonian H ,
and/or any Casimir operators C that the algebra may have. Choosing an (allowed) algebra
determines a model of an harmonic oscillator. The usual ‘continuous’ quantum oscillator is
obtained for G = 1̂ (h̄ = 1) with the oscillator algebra H4 = span {H,Q,P, 1̂}; this contains
the basic Heisenberg–Weyl subalgebra W1 = span {Q,P, 1̂} of quantum mechanics.

2.1. The dynamical algebra u(2)

The algebra of interest to us is u(2) = u(1) ⊕ su(2), where the central u(1) is generated by
EJ , any multiple of 1̂, and where the eigenvalues of the su(2) Casimir operator C are j (j + 1)
for j = 0, 1

2 , 1, . . . . The eigenvalues serve to label and distinguish the (2j + 1)-dimensional
irreducible representation spaces of the algebra; within each of these spaces

−i[Q,P ] = G = H − EJ − 1
2 1̂ = H − (j + 1

2 )1̂ EJ
def= j 1̂. (3)

The postulates of the finite oscillator model give a new physical interpretation to the three
well-known generators of angular momentum, �J = {Jk}k=1,2,3 in su(2) = so(3), and of their
spectra, consisting of 2j + 1 nondegenerate values:

Q = J1 ←→ position q ∈ {−j,−j + 1, . . . , j} (4)

−P = J2 ←→−momentum p ∈ {−j,−j + 1, . . . , j} (5)

H = J3 + j + 1
2 ←→ Hamiltonian h ∈ { 1

2 ,
3
2 , . . . , 2j + 1

2 } (6)

H − 1
2 = J3 + j is the mode number n ∈ {0, 1, . . . , N} N

def= 2j. (7)

The Lie brackets are the usual ones: [Jj , Jk] = iεjklJl and [Jk, EJ ] = 0. Because the u(2)
algebra is compact, the corresponding oscillator model will have intrinsically discrete and
finite position (q|N/2

−N/2), momentum (p|N/2
−N/2) and mode (n|N0 ) values.

2.2. Position and mode eigenbases

Within the representation with j = 1
2N , where the finite oscillator consists of N +1 equidistant

points {− 1
2N,− 1

2N + 1, . . . , 1
2N}, there are N + 1 ‘Kronecker’ eigenstates, which we denote

by

Q|N, q〉1 = q|N, q〉1, q|N/2
−N/2

�J 2|N, q〉1 = 1
2N( 1

2N + 1)|N, q〉1.
(8)

A finite oscillator of N + 1 points also has N + 1 energy eigenstates. To a ground state of ‘zero
bosons’ we can add at most N ‘su(2) bosons’ to reach the highest possible state of the system.
One thus introduces the second eigenbasis

H |N, n〉H = (n + 1
2 )|N, n〉H, n|N0

�J 2|N, n〉H = 1
2N( 1

2N + 1)|N, n〉H.
(9)

To use freely the standard su(2) results for angular momentum we should remember
that the mode number n|N0 is related to the eigenvalues of J3, µ|j−j , through n = j + µ and
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µ = n − 1
2N . To stress the abstract (model-independent) definition of these states we shall

use their kets with round brackets:

|j, µ)3
def= |2j, j + µ〉H J3|j, µ)3 = µ|j, µ)3, µ|j−j

|N, n〉H def= | 12N, n− j)3 �J 2|j, µ)3 = j (j + 1)|j, µ)3.
(10)

The relation between the 1- and 3-basis is a rotation:

e−i 1
2 πJ2 J3 = J1 e−i 1

2 πJ2 ⇒ |N, q〉1 = e−i 1
2 πJ2 |N, j + q〉H. (11)

In this connection we must also recall the abstract definition of the ‘small d’ Wigner
functions [10]:

d
j

m,m′(β)
def= 3(j,m|e−iβJ2 |j,m′)3 = d

j

m′,m(−β) (12)

=
√
(j + m)! (j −m)! (j + m′)! (j −m′)!

×
∑
k

(−1)k
(cos 1

2β)
2j−2k+m−m′(sin 1

2β)
2k−m+m′

k! (j + m− k)! (j −m′ − k)! (m′ −m + k)!
. (13)

The lowest mode of the oscillator is |j,−j)3 = |N, 0〉H; from this, we can find the rest

of the modes by means of the well-known su(2) shift operators, J±
def= 1√

2
(J1 ± iJ2). Their

action on the mode eigenstates is

J+|N, n〉H =
√

1
2 (n + 1)(N − n)|N, n + 1〉H (14)

J−|N, n〉H =
√

1
2n (N − n + 1) |N, n− 1〉H (15)

so the ground and ‘anti-ground’ states obey J−|N, 0〉H = 0 and J+|N,N〉H = 0. Finally,
recursion of (14) displays the mode states in ‘n boson’ form:

|N, n〉H =
[

2n

(
N

n

)]−1/2

J n
+ |N, 0〉H. (16)

2.3. Contraction of the algebra u(2)→ osc

The limit N →∞ [11] can be seen as an algebra contraction where the shift operators (14) and
(15) become the boson creation and annihilation operators of the ordinary quantum oscillator
and their ‘true’ n boson kets:

A† = 1√
2
(Q̂− iP̂ ) A†|n)osc =

√
n + 1|n + 1)osc (17)

A = 1√
2
(Q̂ + iP̂ ) A |n)osc =

√
n |n− 1)osc (18)

|n)osc = (n!)−1/2 (A†)n|0)osc. (19)

The contraction holds for n � N → ∞, when equations (14)–(16) approximate
equations (17)–(19), as

(
n

N

) ≈ 1/n!Nn. This is a sequence of operators in (N+1)-dimensional
space, whose proper convergence to an operator in the Hilbert space of square-integrable
functions on the real line has been analysed by Barker [8]. When understood in this sense (and
with a justifiable abuse of notation) we can write

lim
N→∞

( 1
2N)−1/2 J+ = A† lim

N→∞
( 1

2N)−1/2 J− = A [A,A†] = 1̂ (20)

while the oscillator Hamiltonian limit is obtained from J 2
1 + J 2

2 = (N + 1)H −H 2 − 1
4 ,

lim
N→∞

H = lim
N→∞

(J3 + 1
2 (N + 1)1̂) = Hosc = A†A + 1

2 1̂ = 1
2 (P̂

2 + Q̂2). (21)
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In this contraction, the spectra of the position and momentum operators are a growing number
N + 1 of points, placed at decreasing distance 1/

√
N apart, within the interval −√N/2 and√

N/2 that becomes the real line; the energy spectrum of H , on the other hand, retains its
ground level and unit spacing.

2.4. Kravchuk functions of the finite oscillator

The wavefunctions of the finite oscillator are the overlaps between the Q-basis and the H -basis
vectors. From (10)–(12), they are given by

)(N)
n (q)

def= 1〈N, q|N, n〉H (N = 2j, n|N0 , q|j−j ) (22)

= H〈N, j + q|e+i π
2 J2 |N, n〉H (23)

= d
j

q,n−j (− 1
2π) = d

j

n−j,q(
1
2π). (24)

For the special value β = 1
2π , the ‘little d’ Wigner functions (13) can be written as

d
j

n−j,q

(
1

2
π

)
= (−1)n

2j

√(
2j

n

) (
2j

j + q

)
Kn

(
j + q; 1

2
, 2j

)
(25)

with the square root of two binomial distributions and a symmetric Kravchuk polynomial [12]
in j + q [5]:

Kn(x; 1
2 , N)

def= 2F1(−n,− 1
2N − x;−N; 2) = Kx(n; 1

2 , N). (26)

In figure 1 we show the bottom, middle and top wavefunctions of the finite oscillator.
Kravchuk polynomials are an orthogonal and complete set of functions over N + 1 points,

with summation measure given by the binomial distribution
(
N

q

)
. The square root of this

factor is incorporated into the definition of the Kravchuk functions (24). When N →∞ and at
positions x = q/

√
N , the binomial distribution becomes the well-known decreasing Gaussian

integration measure for the Hermite polynomials. In this limit, as the number and density
of points increase without bound, the Kravchuk functions converge to the ordinary quantum
oscillator wavefunctions:

lim
N→∞

( 1
2N)1/4)(N)

n

(
x

√
1
2N

)
= )osc

n (x)
def= (
√
π 2n n!)−1/2e−x

2/2Hn(x). (27)

In [13] we have verified this limit directly, using 3F2 hypergeometric functions.

2.5. Fractional Fourier–Kravchuk transforms

The time evolution of the finite oscillator is generated by the Hamiltonian H which rotates the
Q–P plane. According to the Hamilton equations (1), this is an inner automorphism of the
su(2) algebra:

e−iφH

(
Q

P

)
eiφH =

(
cosφ sin φ

− sin φ cosφ

) (
Q

P

)
. (28)

The SO(2) cycle of fractional Fourier–Kravchuk transforms [4] of power α on 2j + 1
points is defined in terms of the oscillator evolution angle φ through α = 2φ/π and

Kα def= e−i 1
2 πα (J3+j) = e+i 1

4 πα e−i 1
2 παH (29)

so Kα1 Kα2 = Kα1+α2 and K0 = 1̂ = K4. The ‘phase correction’ by 1
4πα = 1

2φ implies that,
both in the finite and continuous cases, the fractional Fourier(–Kravchuk) transform multiplies
the nth oscillator state by the phase [14]

Kα|N, n〉H = e−i 1
2 πnα|N, n〉H. (30)
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Figure 1. Kravchuk functions )
(N)
n (q) for a finite one-dimensional oscillator of N + 1 = 65

points, joined by straight lines. From bottom to top: the n = 0 ground state (root of the binomial
distribution), and states of n = 1, 2, . . . , 32, . . . , 62, 63, 64 energy quanta. The last one is the
highest state of the finite oscillator (the root of the binomial distribution with alternating signs).
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For wavefunctions |ψ〉 on N+1 points of the discrete position eigenbasis, which we can expand
as

|ψ〉 =
N/2∑

q=−N/2

ψ(N)(q) |N, q〉1 ψ(N)(q)
def= 1〈N, q|ψ〉 (31)

the Fourier–Kravchuk transform acts on the linear combination coefficients ψ(N)(q) through
a matrix that represents rotations around the 3-axis in the Kronecker eigenbasis of the 1-axis
of positions. The kernel is given (see [10], equation 4.7(5)) through a Wigner little d function:

Kα : ψ(N)(q) �→ ψ(N,α)(q) =
N/2∑

q ′=−N/2

K
(N,α)
q,q ′ ψ(N)(q ′) ψ(N,0)(q) = ψ(N)(q) (32)

K
(N,α)
q,q ′

def= 1〈N, q|e−i 1
2 π(J3+j)α|N, q ′〉1 =

N∑
n=0

1〈N, q|N, n〉H e−i 1
2 πnα

H〈N, n|N, q ′〉1

= e−i 1
4 πNα (−i)q−q

′
d
N/2
q,q ′ (

1
2πα). (33)

The kernel is unitary K
(N,−α)
q,q ′ = (K

(N,α)
q ′,q )∗, and represents the group SO(2) with α

modulo 4; this is evident in the before-last expression of equations (33).
The fractional Fourier–Kravchuk transforms form the U(1) symmetry group of the

one-dimensional oscillator (finite or standard), and the states |N, n〉H have definite parity
(−1)n. Parity is conserved under the fractional Fourier–Kravchuk transformation, because J3

commutes with the phase-space inversion.
Lastly, in the contraction limit N → ∞, the Fourier–Kravchuk transform (with α = 1

in (33)) becomes the ordinary integral Fourier transform. For q = x

√
1
2N , q ′ = x ′

√
1
2N and

j = 1
2N

lim
N→∞

√
1

2
N K

(N,1)
q,q ′ = lim

j→∞

√
j e−i 1

2 πNj iq
′−q dj

q,q ′

(
1

2
π

)
= 1√

2π
eixx ′ . (34)

This asymptotic formula appears to be new, and again in [13] we verify this limit with the
functions. The group U(1) of fractional Fourier transforms is the symmetry group both of the
finite oscillator and that of its continuous limit. Finally, coherent states exist in the finite model
as in the standard one: they are the ground state rotated on the sphere of the su(2) model [6],
and in the limit they contract to the translated ground states in the phase-space plane.

3. Finite oscillator on a square grid

The simplest generalization of the one-dimensional finite oscillator of the previous section is
a square grid of (N + 1) × (N + 1) points, with the algebra u(1) ⊕ su(2)x ⊕ su(2)y of two
independent and mutually commuting subalgebras (4)–(7) for the x and y directions and the
same central algebra u(1) of generator E(x)

J = E
(y)

J = 1
2N 1̂.

3.1. Position, modes and wavefunctions

From the previous section we build straightforwardly the Kronecker eigenbasis of positions (8)
for a finite two-dimensional oscillator arranged in a Cartesian grid, namely

Qx |N; qx, qy〉1 = qx |N; qx, qy〉1, qx |N/2
−N/2 (35)

Qy |N; qx, qy〉1 = qy |N; qx, qy〉1, qy |N/2
−N/2 (36)

( �J (x))2|N; qx, qy〉1 = 1
2N( 1

2N + 1)|N; qx, qy〉1 = ( �J (y))2|N; qx, qy〉1 (37)
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(a)

(b)

Figure 2. Two-dimensional finite oscillator (a) position space (qx, qy) and, (b) Cartesian modes
(nx, ny), for 25 points (N = 4, j = 2). States with the same total number of quanta n = nx + ny

are joined with thin horizontal lines. As explained in the text, however, these states do not form
ordinary su(2) multiplets, but the su(2) group can be imported on their subsets.

and are shown schematically in figure 2(a).
From (16) we can build the Cartesian modes of the finite two-dimensional oscillator as

direct products |N; nx, ny〉H = |N, nx〉Hx |N, ny〉Hy obtained from the ground state |N; 0, 0〉H
by

|N; nx, ny〉H =
[

2nx+ny

(
N

nx

) (
N

nx

)]−1/2

(J (x)
+ )nx (J

(y)
+ )ny |N; 0, 0〉H. (38)

These states will satisfy (9) and (10) in the x and y components:

Hx |N; nx, ny〉H = (nx + 1
2 )|N; nx, ny〉H, nx |N0

Hy |N; nx, ny〉H = (ny + 1
2 )|N; nx, ny〉H, ny |N0

(39)

and are shown in figure 2(b), arranged into a rhombus whose vertical axis counts the total
number of quanta:

n
def= nx + ny H |N; nx, ny〉H = (n + 1)|N; nx, ny〉H H

def= Hx + Hy. (40)
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Figure 3. Cartesian eigenstates )
(N)
nx ,ny (qx, qy) of the two-dimensional finite oscillator (17 points,

N = 16, j = 8) showing density plots of selected wavefunctions. They are placed in a pattern
corresponding to the rhombus of states in figure 3(b).

The Cartesian mode wavefunctions of the two-dimensional finite oscillator are simply the
product of two one-dimensional ones:

)(N)
nx,ny

(qx, qy)
def= 1〈N; qx, qy |N; nx, ny〉H = )(N)

nx
(qx))

(N)
ny

(qy). (41)

In figure 3 we show Cartesian mode wavefunctions of a finite oscillator. The bottom states are
clearly recognizable as low-energy harmonic oscillator wavefunctions, while the top states are
as the former but with a checkerboard change of signs.
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3.2. Domestic symmetry of the finite oscillator

Naturally, a two-dimensional finite wavefield may be subject to two independent fractional
Fourier–Kravchuk transforms of powers αx and αy :

Kαx,αy = Kαx

(x) Kαy

(y) = ei 1
4 π(αx+αy) e−i 1

2 π(αxHx+αyHy) (42)

Kαx,αy |N; nx, ny〉H = e−i 1
2 π(nxαx+nyαy) |N; nx, ny〉H (43)

Kαx,αy : ψ(N)(qx, qy) �→ ψ(N,αx,αy)(qx, qy) =
N/2∑

q ′x ,q ′y=−N/2

K
(N,αx)
qx ,q ′x

K
(N,αy)

qy ,q ′y
ψ(q ′x, q

′
y). (44)

These transforms are elements of the symmetry group U(1)x ⊗ U(1)y . Following [7, 8] we
call them domestic to the finite oscillator model. Also domestic to the finite two-dimensional
Cartesian oscillator model are the 1

2π rotations of the x–y plane of position together with
momentum, and inversions across the x and y axes, which form a dihedral group D4 of
outer automorphisms of the algebra su(2)x ⊕ su(2)y . The parity of the state |N; nx, ny〉H
is (−1)nx+ny = (−1)n. This dihedral group, in semidirect product with the (multiply)
connected group of separable x–y Fourier–Kravchuk transforms (42)–(44), constitute the
domestic symmetry group of the finite two-dimensional Cartesian oscillator model.

We remark that the ‘continuous’ two-dimensional quantum oscillator has the larger
symmetry group U(2); its optical counterpart of fractional Fourier transfoms was studied
in [9]. The centre U(1)c ⊂ U(2) is the subgroup of ‘isotropic’ Fourier integral transforms
(cf equations (42)–(44) with αx = αy) and is generated by the total number operator. These
and all x–y separable Fourier transforms of the continuous oscillator model are in 1:1 and limit
correspondence with the Fourier–Kravchuk transforms of the finite (N +1)2-point models. But
the continuum model also includes continuous rotations of the oscillator plane by angles φ

on the circle. With these rotations and the previous separable Fourier transforms, all U(2)
Fourier transformations can be generated. Prima facie, the finite square oscillator, whose
wavefunctions can be visualized as images on a pixellated computer screen, do not seem to
be amenable to continuous rotation. Yet, in the following section we shall define rotations of
functions on the square.

4. Angular momentum states

In this section we shall import rotations from the continuum model, so that discrete functions
on the pixel array can be subject to a unitary simile of rotation.

4.1. Sets of states degenerate in energy

In figure 4 we show the sets of finite oscillator states that have the same total number of energy

quanta, n
def= nx +ny ∈ {0, 1, . . . , 2N}. They can belong to the ‘lower’ or ‘upper’ half-rhombi:{|N; 0, n〉H, |N; 1, n− 1〉H, . . . , |N; n, 0〉H

}
, n|N0 (45){|N; n−N,N〉H, |N; n−N+1, N−1〉H, . . . , |N;N, n−N〉H

}
, n|2NN . (46)

Only the N + 1 states with n = N quanta belong to both the lower and upper sets. Within each
set, the states can be distinguished by the values (λ, κ), where

λ
def=

{ 1
2n for n|N0
N − 1

2n for n|2NN
and κ

def= 1
2 (nx − ny) ∈ {−λ,−λ + 1, . . . , λ}.

(47)
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Figure 4. Eigenstates of the two-dimensional finite oscillator showing (in thin boxes) two su(2)
multiplets of states degenerate in energy n = 2λ = nx +ny (for n = 3 and 7 quanta), distinguished
by κ = 1

2 (nx − ny). The multiplets are not domestic because operators that can shift one state to
the next, indicated by arrows (see equations (14), (15) and (48)), do not close into a Lie algebra.

It is important to realize that these sets of states, highlighted in figure 4 are not members
of su(2) multiplets. Indeed, on an n = constant level, the operators that shift one state (λ, κ)

to the next (λ, κ ± 1) are bilinear products of the raising and lowering operators (14) and (15),
namely J

(x)
+ J

(y)
− and J

(x)
− J

(y)
+ . These do raise and lower κ = 1

2 (nx − ny) by 1; but because

[J (x)
+ J

(y)
− , J

(x)
− J

(y)
+ ] = 1

2 (J
2 + J

(x)
3 J

(y)

3 )(J
(x)
3 − J

(y)

3 ) (48)

they do not close into a Lie algebra (instead, they form the algebraic basis for a cubic
algebra [15]). Only in the limit nxny � N2 → ∞ does the commutator (48), divided by
( 1

2N)2, contract to an operator with a linear spectrum, so the set of states n = constant are
true su(2) multiplets. It has been said that the domestic symmetry group of the finite two-
dimensional oscillator enlarges from U(1)x ⊗ U(1)y to U(2).

4.2. Standard su(2) multiplets of angular momentum

The symmetry group of the standard two-dimensional quantum oscillator is generated by the
bilinear products of the creation and annihilation operators (17), (18), A†

xAx , A†
xAy , A†

yAx and
A†

yAy . They constitute a basis for a specific realization of the unitary algebra that we denote
with bars, u(2), to emphasise that it is a physically distinct algebra from the dynamical algebra
of the finite oscillator. We use the presentation of [16] to write

L1
def= 1

2 (A
†
xAx − A†

yAy) L2
def= 1

2 (A
†
yAx + A†

xAy)

L3
def= i 1

2 (A
†
yAx − A†

xAy) EL
def= A†

xAx + A†
yAy.

(49)

The Casimir operator turns out to be �L2 = 1
2EL(

1
2EL + 1), so EL = λ1̂ identifies the su(2)

irrep λ = 1
2n with the set of states at the energy level n = nx + ny , which is discrete and

unbounded (while in the finite model, 0 � n � 2N ).
In the Cartesian-mode basis (nx, ny), the generator L1 is diagonal and has eigenvalues

κ = 1
2 (nx − ny)|λ−λ, as in (47). The standard two-dimensional quantum oscillator also has the

physical orbital angular momentum operator M , which generates rotations in the x–y plane,
and which is twice the su(2) generator L3:

M
def= QxPy −QyPx = 2L3. (50)
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Hence, if µ|λ−λ is the spectrum of L3 within the su(2) algebra in (49), then the spectrum of the
angular momentum operator M will be the set of integer values spaced by 2:

m = 2µ µ|λ−λ ⇒ m ∈ {−n,−n + 2, . . . , n}. (51)

We use the following two subalgebra chains [16] and their abstract kets (indicated with
round brackets as before):

u(2) ⊃ u(1) ⊕ u(1) u(2) ⊃ u(1)c ⊕ so(2)

Cartesian 1
2EL + L1

1
2EL − L1 polar EL M

|nx, ny)1 ↓ ↓ |λ,µ)3 ↓ ↓
nx + ny = n nx ny λ = 1

2n n m = 2µ.

(52)

To pass from the Cartesian states to the polar states, we need their overlaps [17]. This problem
is analogous to that already solved in (24)–(26); to apply those results, we replace

j = 1
2N → λ = 1

2n = 1
2 (nx + ny) (53)

q|N/2
−N/2 → κ = 1

2 (nx − ny)|n/2
−n/2 µ|N/2

−N/2 → 1
2m = µ|n/2

−n/2. (54)

From (24) we thus find

|λ,µ)3 =
∑

nx+ny=n=2λ

|nx, ny)1 1(nx, ny |λ,µ)3 1(nx, ny |λ,µ)3 = dλ
µ,κ(

1
2π). (55)

Rotations of the oscillator plane by an angle θ are generated by the orbital angular
momentum operator (50)

R(θ)
def= e−iθ M = e−2iθ L3 R(θ) |λ,µ)3 = e−2iµθ |λ,µ)3. (56)

On the L1 eigenbasis, the action of rotations R(θ) is found in exactly the same way as we
found the fractional Fourier–Kravchuk transform kernel in equations(32) and (33), with n in
place of N and 2θ in place of φ = 1

2πα. However, since the bilinear generating function for
the Fourier–Kravchuk transform (33) was built with phase 1 for the ground state, while for
rotations the generating function has phase 1 at the mid-state in the multiplet (see (56)), the
two kernels will differ by a phase in each representation:

R(θ) |nx, ny)1 =
∑

n′x+n′y=n
|n′x, n′y)1 R

(n)
1
2 (n
′
x−n′y ), 1

2 (nx−ny)
(θ) (57)

R
(n)
κ ′,κ (θ)

def= 1(n
′
x, n

′
y |e−2iθL3 |nx, ny)1 (58)

= einθ K
(n,4θ/π)

κ ′,κ = (−i)κ
′−κ dn/2

κ ′,κ (2θ). (59)

These rotation matrices are unitary and represent an SO(2) group with the parameter θ on the
circle. They are diagonal for θ = 0,±π and, when θ = ± 1

2π , antidiagonal with alternating
signs.

4.3. Importing rotations

Now we import the group of rotations from the two-dimensional quantum oscillator to the two-
dimensional finite model by defining the action of these rotations R(θ) to be exactly as (57)
on the finite oscillator x–y separated states |N; nx, ny〉H in (38), as if they were the u(2) states
|nx, ny)1:

R(θ) |N; nx, ny〉H def=
∑

n′x+n′y=n
|N; n′x, n′y〉H R

(n)
1
2 (n
′
y−n′x ), 1

2 (nx−ny)
(θ) (60)

n =
{
nx + ny when 0 � nx + ny � N

2N − nx − ny when N � nx + ny � 2N .
(61)
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Rotations acting on finite oscillator wavefunctions which are linear combinations of all
|N; nx, ny〉H’s are thus block diagonal in n.

We emphasize that we have imported the transformation group SO(2), rather than any
Lie algebra (whose generator, M , in (50) is not in the enveloping algebra of the finite oscillator
algebra, which only contains positive integer powers of the generators). Finally we must verify
that the imported SO(2) rotations indeed mesh adequately with the domestic U(1)x ⊗U(1)y
fractional Fourier–Kravchuk transforms (Kαx,αy in (42) and (43)). For αx = 1

2πφx and

αy = 1
2πφy), the latter multiply the kets by the phases e−i(nxφx+nyφy) = e−i 1

2 n(φx+φy)e−iκ(φx−φy)

(with n = nx + ny and κ = 1
2 (nx − ny) used as before). The first factor corresponds to

the central (isotropic) Fourier transforms in U(1)c ⊂ U(2) which commutes with rotations.
We are thus interested in the 2D Fourier–Kravchuk transforms of the special form Kα,−α

(see (42)–(44)), whose two phases e±
1
2 inα will cancel. We set φ

def= φx = −φy = 2α/π and

χ
def= χx = −χy = 2γ /π ), and for each energy level 0 � n � 2N , we find from (42)–(44)

and (57)–(59) that

Kα,−α R(θ)Kγ,−γ |N; nx, ny〉H =
∑

n′x+n′y=n
|N; n′x, n′y〉H D

n/2
κ ′,κ (2φ, 2θ, 2χ) (62)

where the Wigner ‘big’ D irrep functions of SU(2) appear:

D
n/2
κ ′,κ (2φ, 2θ, 2χ) = e−2iκ ′φ d

n/2
κ ′,κ (2θ) e−2iκχ . (63)

The D functions are well known to be the matrix elements for unitary irreducible
representations of SU(2).

4.4. Finite mode-angular momentum states

The consistency of the importation process allows the definition of finite oscillator states of
integer angular momentum m = 2µ (indicated by AM). These are mathematically identical
to (55), but with the physical labels of mode number n and angular momentum m. For the set
of states in the lower half-rhombus (�) in figure 2(b), we define

|N; n,m〉AM�
def=

∑
nx+ny=n

|N; nx, ny〉H d
n/2
1
2 (nx−ny),

1
2 m

( 1
2π) (64)

n ∈ {0, 1, 2, . . . , N} m ∈ {±n,±(n− 2), . . . ,±1 or 0}. (65)

Correspondingly, for the set of states in the upper half of the rhombus (�),

|N; n,m〉AM�
def=

∑
nx+ny=2N−n

|N;N − nx,N − ny〉H d
n/2
1
2 (nx−ny),

1
2 m

( 1
2π) (66)

n ∈ {N,N+1, . . . , 2N} m ∈ {±(2N−n),±(2N−n−2), . . . ,±1 or 0}. (67)

The largest multiplet n = N belongs to both sets. The upper part contains highly oscillating
wavefunctions (see figure 3) which nevertheless form multiplets of low angular momentum.

As in the two-dimensional standard quantum oscillator, energy can be divided into radial
and angular contributions:

total quantum number n
def= 2nr + |m| ∈ {0, 1, 2, . . . , N}

angular momentum m ∈ {±n,±(n− 2), . . . ,±1 or 0}
‘radial quantum number’ nr = 1

2 (n− |m|) ∈ {0, 1, 2, . . . , 1
2 (n−1) or 1

2n}.
(68)

The radial quantum number is the degree of the Laguerre polynomial in the quantum
eigenfunction. Although the finite oscillator does not decompose into ‘radial and angular’
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factors, we see in (25) and (26) that the degree of the Kravchuk polynomials is j + µ →
1
2 (n − |m|) = nr . So, according to whether n is even or odd, 1

2n or 1
2 (n − 1) ‘radial’ zeros

will appear on each Cartesian half-axis. The finite Cartesian harmonic oscillator angular
momentum wavefunctions are obtained through the overlap of the mode-angular momentum
states with the Kronecker eigenbasis of (Cartesian) position (cf equation (41)):

)(N)AM
n,m (qx, qy)

def= 1〈N; qx, qy |N; n,m〉AM (69)

= (−1)
1
2 (|m|−m)

∑
nx+ny=n

e−i 1
2 πny dλ

1
2 (nx−ny),

1
2 m

( 1
2π))(N)

nx
(qx))

(N)
ny

(qy) (70)

where

λ =
{ 1

2n when 0 � n � N

N − 1
2n when N � n � 2N .

(71)

The total parity of |N; n,m〉AM is (−1)n = (−1)m.
In figure 5 we show the angular momentum functions placed in a rhombus pattern similar

to that of figure 3, but with the horizontal axis now marking angular momentum. Only the
ground and top states are singlets, and at the same time Cartesian states. The functions on the
boundary of the rhombus have maximal angular momentum; they exhibit |m| ‘diameter’ zeros
and suggest (in the quantum mechanical picture) that the particle circulates, staying as far from
the centre as possible. The real and imaginary parts are similar, but off by a phase rotation of
π/2|m|. For low n, the functions at the m = 0 midline (n = 0, 2, . . .) show clearly the radial
zeros; at n = N , the ‘particle’ seems to prefer oscillating along the diagonals. For high n,
there are checkerboard sign changes, even at low m; the usual interpretation fails because the
standard quantum oscillator does not have such ‘anti-ground’ states. These angular momentum
states of the finite oscillator will transform under the imported SO(2) rotations, acquiring only
a phase:

R(θ) : )(N)AM
n,m (qx, qy) = e−imθ)(N)AM

n,m (qx, qy). (72)

In figure 6 we show the real part of one of these states as it rotates within the fixed square pixel
grid.

In the contraction limit N → ∞, we saw in (27) that the Kravchuk functions become
Hermite functions. Now, the upper-rhombus states escape to infinity while the lower mode-
angular momentum functions become the familiar Laguerre functions of the two-dimensional
harmonic oscillator, because the transformation in (72) is independent of N . Hence, we obtain
that

lim
N→∞

( 1
2N)1/2)

(N)AM
n,m,�

(
�q
√

1
2N

)
= )osc

n,m(�q )

def=
√

( 1
2 (n− |m|))!

π( 1
2 (n + |m|))! |�q |

|m|
(

qx + iqy

qx − iqy

)1
2 m

e−
1
2 |�q |2 L|m|1

2 (n−|m|)
(|�q |2). (73)

5. Conclusions

The two-dimensional quantum harmonic oscillator solves the Newton–Lie and Hamilton–
Lie equations (1) with the Lie algebra H6 = span{ �Q, �P Hx,Hy, 1̂}, while the finite
oscillator satisfies the same geometric and dynamical equations with the direct sum algebra
u(1)⊕ su(2)x ⊕ su(2)y . But while the first has a quadratic extension that closes into the full
oscillator dynamical algebra sp(4,Re ), the second one does not. In particular, the symmetry
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Figure 5. Angular momentum eigenstates )(N)AM
n,m (qx, qy) of the two-dimensional finite oscillator

for N = 17 points. The right half of the rhombus of states (m � 0) shows the real part of the
function (which is symmetric under m↔ −m); the left half of them (m < 0) shows the imaginary
part (which changes sign under m↔ −m). In the middle (m = 0), the wavefunctions are real.

subalgebra u(2) ⊂ sp(4,Re ) of the quantum oscillator does not ‘naturally’ occur in the finite
case.

It has not been satisfactorily explained why the symmetry groups of discrete systems
can enlarge in the continuum limit. Some authors [18] have forced the states of a system into
multiplets of an extraneous group by writing algebras of ‘operators’ that contain square roots of
the Casimir operators, which do not belong to the universal enveloping algebra. Other authors
working with finite models, especially those based on the very important Harper functions,
whose energy spectrum is not equally spaced, import the oscillator periodic motion [7, 19].



9396 N M Atakishiyev et al

Figure 6. Clockwise from top left: rotation of the angular momentum state )
(N)AM
4,2 (qx, qy)

in a finite two-dimensional Cartesian oscillator (33 × 33 pixels, N = 32, j = 16), for angles
θ = 0◦, 15◦, 30◦, and 45◦.

Periodicity of motion is assured within our model of the finite oscillator because the group
is compact; the Fourier–Kravchuk transform (but for a phase) is generated by the oscillator
Hamiltonian. Here we have imported rotations that mesh with this domestic symmetry of a
finite system. The problem of invertible rotations of pixellated images, although mentioned in
the literature [20], has not been subject to a search as thorough as the closely related problem
of finite fractional Fourier transformation, where one necessary factor has been to have a
fast algorithm such as the FFT. We interpret the Fourier–Kravchuk transform as the proper
finite analogue of the Fourier integral transform because it is a unitary representation of an
SO(2) group, which harbours coherent states, and which has a proper contraction limit to its
continuum analogue. Similarly, SO(2) rotations of a pixellated image are unitary, coherent
states are constructible with well-known techniques [16], and the nature of the continuum limit
is a well-posed group-theoretic problem. The group U(2) of x and y oscillator evolution, and
rotations, becomes a fully domestic symmetry only in the continuum limit N →∞.

It is clear that our treatment can be extended to D dimensions in Cartesian coordinates,
with a domestic group

⊕D
α=1 U(1)α and an imported SO(D) rotation group. However, we

deem it more interesting to follow our investigation of the finite two-dimensional oscillator in
part II of this work with the model of a finite radial oscillator. It could hardly have escaped
the reader that the accident su(2)x ⊕ su(2)y = so(4) occurs. The dynamical algebra for the
D-dimensional radial oscillator will be so(D + 2), and its position space pixellates the plane
into a finite number of circles with radii ρ ∈ {0, 1, . . . , N}, and 2ρ + 1 ‘sensor points’ on each
circle —with the same total of (N + 1)2 points. In the radial coordinate there is a finite version
of the fractional Hankel integral transform (with kernel Jm(rr

′)), which are the (new) Hankel–
Hahn transforms; these involve the discrete orthogonal dual Hahn polynomials through so(3)
Clebsch–Gordan coefficients.

The finite two-dimensional Cartesian and radial oscillator models correspond to two
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distinct subalgebra chains of so(4); in part III of this series we will explore their relation.
In this way we hope to understand the separation of discrete variables as a finite counterpart of
the usual separation of the oscillator in Cartesian and polar continuous coordinates [21]. With
this, we can unitarily transcribe pixellated images between Cartesian and polar grids.
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